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Sounds super narcissistic! Quite the opposite...

ONLY qualified to talk about what I've done and
experienced

How that has shaped (and keeps shaping) my agenda
What | personally see as opportunities and challenges
Grain of sand on a (growing) beach
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MOTIVATION

* Different perspectives/sides of the same story

* Factual (verbal) information was the same, but image was
different

¢ Use of images for framing and mobilization purposes

* Robert Cohen: role of media and photo journalists, and
their impact on what we see and what we never see

e Too many images! No money :( — Need for systematic,
quick, and efficient analysis tools
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NOT THE FIRST ONE TO NOTICE THAT IMAGES MIGHT
BE IMPORTANT

10 Photos That Changed the Course 50 Famous Photos That Changed
of History Our World

e Catalyzers of change
¢ Effect of presenting information through images

* (Creative) measurement
* Use images as a vehicle for a complex treatment

* Visual framing of movements: capturing reality + editorial footprints
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PUzzLES AND QUESTIONS

New data, new tools, new questions (and some
unanswered ones)

Large amounts of unstructured data

Questions about the factors that generate visuals...

...and their role on attitude formation and behavior
Increased accessibility but steep learning curve(*)

Dilemma: Rigor/Understanding-Accessibility trade-off
More than just prediction
High skepticism

Two extremes

Fear of the unknown

Distrust of machines

ML tools as “black boxes” and disconnected from social
sciences
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TOOLS FOR IMAGE ANALYSIS: CNNS FOR SOCIAL
SCIENTISTS

¢ With the incomparable and amazing @A
Francisco Cantu <

¢ |ntroduce the intuition and

implementation of Convolutional Ee—— =
Neural Networks to Social Scientists ; ﬂ

* CNNs: architectures with “layers of i ]
neurons [matrices]” that learn the = =] =
relationship between features and
outcomes using training data

¢ Decrease the entry costs to the
computer vision world: explanation,
glossary, social science application,
etc.
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TOOLS FOR IMAGE ANALYSIS: THE BoVW

¢ Development of the BoVW as a
framework to “tokenize” images

¢ Suitable for supervised and
semi-supervised models

Proportion of topic crowd by ideological alignment

* |n particular: input for a visual STM
* Building a DTM for images:

@ Identify key points

9 Describe them with HoGs (changes in
pixel intensity)

9 Cluster them to form visual vocabulary

0 Count the number of times they appear —
in an image

anananan

xxxxxxxxxxx

Ideology media outlet

* Identify topics as visual frames

“Crowd” topic — Frame of magnitude
Ideological slant — Frame of magnitude
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TREATMENTS

* Images as treatments

¢ Refinement of the BoVW: “richer” feature
extraction

Adapt Fong & Grimmer SIBP:
multidimensional treatments
Translation of assumptions to visual
world

* New framework
@ Divide images into blocks

9 Use a CNN to extract features from
each block
Construction of more comprehensive
visual vocabulary

¢ Detect the effect of latent treatment while
controlling for confounding treatments

Skeptics

Affects Family

N
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e
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OBSTACLES AND SPEED BUMPS

Dealing with difficult data

Collection: format, quality, access, copy-right
Analysis: computational resources, learning curve

Curation and validation of data
Coding extra sensitive to biases, performance, cognitive
filters, etc.
Lack of datasets and models designed for social scientists.
When available: data is not that clean.
Going beyond prediction
Inference, interpretation, and uncertainty
More meta: are we truly capturing THE essence that
makes images special?
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s

* Don't use it just because you can
Solid premise on image’s importance motivated by theoretical grounds
What is the question? What is the trait you want to measure?
What am | learning?

* Be realistic about your outcome of interest; tailor your strategies
If you cannot see it, the computer will not see it either
There are concepts that are in the eye of the beholder (e.g. beauty)...
... and others that are too abstract/hard and subject dependent (e.g.
evoked emotions)
Concrete, factual, identifiable elements (or re-think the question/research
goal)

* Be rigorous about your data
Clean and take training data seriously
Validate your models
Learn from and be transparent about your mistakes



WHAT’S NEXT?

* Al + Generative models: scope, effect, and structure

* Technical concerns of generative models: overall opaqueness
* New developments and complex questions

* Beyond prediction: interpretation, diagnosis, and inference
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¢ Backlash of NULL credibility and HIGH skepticism: “overtreatment” of
images and distrust

The scene from a Kamala Harris and Tim Walz rally in Detroit on Aug. 7. Former President Donald Trump falsely
claimed that another picture of the rally showing a large crowd was generated by artificial intelligence.
Tamara Keith/NPR
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* Technical concerns of generative models: overall opaqueness (*)
* Training data and architectures: challenge for human learning (deeper
knowledge AND bias detection)

* Results and suitability for the real world: romanticization of political
events

Query: “Georgia State Patrol officers detaining a protester
on the Emory University campus in Atlanta on Thursday.”
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QQQQQ




WHAT’S NEXT? OTHER ISSUES

¢ New developments and complex questions
Multi-modality
Videos taken seriously!

e Beyond prediction
ML + Causal Inference — Images as treatments,
outcomes...(*)
Stats approach to ML: Interpretable CV
Mixed methods approach: qual + quant



Thank you!

smtorres@ucla.edu



