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GOALS

© Cover the basics of images-as-data
@ Introduce you to canonical and recent(-ish) computational
methods and tools for the analysis of imagery

© FOCUS ON:

Logic, statistical foundations, and structure
Implementation

@ Practice some coding in Python and R
©® Learn CS tools through our SS glasses

Why cares (or should care) about images?
Responsible and rigorous use of “flashy” and “glittery” tools

0O Have fun! (Yes, yes, | know | am biased!)



Let’s start!
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* Images are powerful: extra information + emotional
activation + see to believe = recall, engagement, attitude
formation

* Images are universal (e.g. compare them to
spoken languages)

e Visuals are frames
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WHY IMAGES OF PROTESTS?

* We have “missing protest data”: bias in
coverage, hard-to-measure elements —

Social media as a new source of data Birmmgham
* Study coverage bias/framing and factors Jails Full
behind it

protest infrastructure and dynamics

* Measure difficult traits: magnitude, Of Marchers |
\ ]

¢ Explore other important characteristics:
emotions, violence, strategies

¢ Impactful way of communicating a
message
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Process large pools of images

* Increase consistency/reliability and decrease bias (*)
Helping humans to “see” and discover (%)

Computer vision: Teaching computers to see
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A very hard task!
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GETTING READY

Course website, Github: smtorres/FU_Workshop
Google Colab notebooks
Notebook 1: here

Notebook 2: here
Notebook 3: here

Follow instructions here
When doing your own projects:

Install Keras (here), with tensorflow backend
Install the following python libraries: numpy, scipy, cv2,
matplotlib, PIL, sklearn = Look for tutorials for your
machine
Check tutorials for OpenCV installation here
| suggest OpenCV 3.X and its compilation from source for
full functionality


https://github.com/smtorres/FU_Workshop
https://colab.research.google.com/drive/1m7mLPFqQ1m34ZT3jMRGyL3RuA9Qe03xJ?usp=share_link
https://colab.research.google.com/drive/1slXF5JpV-2zewnICsVgKrlVZOD14hAyJ?usp=share_link
https://colab.research.google.com/drive/1slXF5JpV-2zewnICsVgKrlVZOD14hAyJ?usp=share_link
https://github.com/smtorres/AU-Workshop
https://keras.io/#installation
https://www.pyimagesearch.com/opencv-tutorials-resources-guides/
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* Matrix representation

Grayscale: one matrix

Color: array with a matrix for each
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IMAGE BASICS

* Animage is a set of pixels:

Finest unit (defines height and
width)

intensity of light, Color:

color intensity per channel.

* Matrix representation
Grayscale: one matrix
Color: array with a matrix for each
color channel (Red, Green, and
Blue)

* Notice that in OpenCV:

Color channel specification is BRG
instead of RGB

Origin of image is different (top left
corner)
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IMAGE BASICS

* Animage is a set of pixels:

Finest unit (defines height and
width)

intensity of light, Color:

color intensity per channel.

* Matrix representation
Grayscale: one matrix
Color: array with a matrix for each
color channel (Red, Green, and
Blue)

* Notice that in OpenCV:
Color channel specification is BRG
instead of RGB
Origin of image is different (top left
corner)
In numpy you specify the
y—coordinates of an image first: x2
= image[yO:yl, x0:x1]
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DESCRIBING AN IMAGE

e Think about the “tokens” or elements that give meaning to
text. What are those?

e The main challenge with images: a lot of pixels that mostly
make sense when analyzed in clusters and not as units.

e Therefore, we use image descriptors to characterize the
content on an image globally or feature descriptors to
locally quantify regions of the image.

Color

Texture

Shape

Pixel intensity change
Edges, objects, etc.

* Feature vectors: A series of numbers used to numerically
quantify the contents of an image (or regions of it) == WE
USE THEM TO CREATE TOKENS!
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AN EXAMPLE: COLOR STATISTICS

Channel statistics Histograms
° Very intuitive and Simp|e ¢ More information based on
* Basic statistics of each distribution
color channel * 3D histogram of colors
@ Separate channels @ Convert image to
@ Compute moments for
each channel @ Compute 3D histogram

@ Concatenate to form feature vector

Voila! You have a global descriptor for your image — Your
feature vector = a token!
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Channel Mean Median Std.

Red

Dev
135.4 1365 77.2

Green 143 146 85.7

Blue

147 146 90.8
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A VERY VALID QUESTION:

But... aren’t these tokens too simple?
* Yes! They are... (still useful depending on your
application)
* The blessing and curse of images is their complexity
and richness

* 1) Existence of and 2) interaction between A LOT of
features (remember: texture, shapes, objects, colors,
etc.)

* So how can we take all those things into account to
correctly capture the content and (potentially)
message of our images?

* In other more ambitious words:
How do we teach the computer to see like us?



Convolutional Neural Networks
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SEEING LIKE A HUMAN

@ Pyramidal cells

@ Interneurons

Credit: Bachatene, Bharmauria and Molotchnikoff (2012).

* Light enters through our eyes and internally recreates the imagery that
the light forms

* This signal is sent to the brain for analysis

* Neurons are organized into layers.

e Every layer breaks down the signal into small pieces, allowing each of
its neurons to focus on a unique piece of information.

* The first layers identify basic visual patterns, intermediate layers
transform patterns into shapes, and the last layers convert shapes into
objects.
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e The information from all of these layers allows the brain to
make sense of what we are seeing
* There is an extra crucial step: connecting the processed
visual stimulus to a concept or meaning
* The blurry line of my personal and professional lives: How
babies learn to see and identify objects
 Distinguishing, tracking, and naming: “Oh look, a puppy is
coming!”, “This is a puppy”, “The puppy wants to kiss you”
Baby: “Hmhm... this furry, medium, four-legged, moving
blob seems to be called puppy”

e This is a TRAINING process (*)
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* Modern computer vision systems are meant to emulate how human
brains transform sensual stimuli into conceptual understanding

* The process allows computers to set their own set of rules to classify
information based on TRAINING (*)

a /Cr\ W er.
synaptic terminal
de’&mes c /v%

cell body N — —4

Strengths I—>| Sum | Transform |—>|Output|
Credit: Buduma (2017)
* This process is called Convolutional Neural Network (or CNN)
* A set of “neurons” in charge of identifying unique bits of information...
e ..arranged in a network that allows for information sharing/processing...

e ... to eventually “tag” or “name” the input
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WAIT... WHAT?

A very sophisticated text that I've been reading a lot recently:

for

3 babies |

(No... I am not joking)



THE LOGIC OF CNNs
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Is there a red animal in this picture? The neuron can decide based on its input.
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When the neuron has an answer, it sends its own message.
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Does this animal have 8 arms?
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The neuron can decide based on its input.



THE LOGIC OF CNNs
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Neurons talk to each other.

Where do the messages go? They connect together in a network.
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ALMOST LIKE FINDING WALDO...

e Ok, not that cartoonish but
almost!

* What is your approach when you
want to find Waldo?
* Scan the image looking for
particular “features”
Red and white stripes
Glasses
Hat
* There is a robot who finds him in
less than 5 seconds




FOR REAL

And it's based on CNN code (see here)



https://towardsdatascience.com/how-to-find-wally-neural-network-eddbb20b0b90
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SPEED BUMP: A HEALTHY DOSE OF SKEPTICISM

* Although the motivation behind and structure of CNNs try
hard to resemble the human brain, they are EXTREMELY
far from approaching its awesomeness

* An obvious gap: context, meaning, abstraction

* An extra one: how large and rich the training set must be
(ex. pumpkins and sheep)

e This has important implications for their usage and
applicability



Back to business...
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* Convolutional Neural Networks (CNNs) is a supervised
learning algorithm to classify images

* CNNs gradually learn what visual features of the image are
more important in a classification task by transforming the
image into multiple representations or feature maps.

* CNNs are organized into multiple layers. Each layer
contains multiple representations of the original image
through maps of visual features such as edges, blobs or
color combinations.

* The part of learning and reaching a semantic concept that
humans conduct by trial and error is achieved through the
training, validation and testing procedures in CNNs.
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NETWORK STRUCTURE

e GOAL: learn the features associated w/ outcomes
* Translation: obtain “coefficients” [weights in feature maps]
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NETWORK STRUCTURE

e GOAL: learn the features associated w/ outcomes
* Translation: obtain “coefficients” [weights in feature maps]
* Mainly, a data reduction technique — Why?
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NETWORK STRUCTURE

GOAL: learn the features associated w/ outcomes
Translation: obtain “coefficients” [weights in feature maps]
Mainly, a data reduction technique -~ Why?

Not a black-box! — Optimization of error

PRE-PROCESSING FEATURE EXTRACTION CLASSIFICATION
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REPRESENTING IMAGES
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The image is transformed into a numerical matrix, where each
element represents the value of a specific pixel of the image
measured as light intensity (in grayscale images) or color
intensity (in color images).



FEATURE EXTRACTION
It's all about feature extraction!

Input matrix Filter Feature map
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Filters are matrixes made of weights, that maximize or minimize the
“intensity” of a pixel. Every filter slides through each 3 x 3 pixel area
of the image, and computes the dot product of the region. The result
is recorded on a smaller matrix to create feature maps. Intuitively, we
want to detect whether and where a feature represented by a filter is
prominent in the image.




ACTIVATION FUNCTIONS

() Sigmoid(z) = 2=  (b) Tanh(z) = 25  (c)ReLU(x) = {O ifz <0,

= = )
Ite I+e x  otherwise.

We add non-linearity by including an activation layer.



POOLING STAGE

Non-linear activation:

Tanh(x) max pooling

0|06 1]0]0 0 osatozel o | o | 083707610761 0

10.905(0.90!
] 0 (15| 0 [1] 0 0 |0.905| 0 0 0.537 0

0|0 |22/0 |0 0| 0 o976l 0 | O 0 10.9760.976/ 0

0|0 (03|00 0| 00201 0 | 0 0 [0.9760.976| 0

Once the activation map shows non-linear outputs, we reduce
its dimensionality using a pooling layer. A pooling layer shrinks
the size of the matrix while keeping the most important
information in the feature map.



LEARNING

* The last stage of the network involves the classification of
the image. The way in which the CNN learns the features
that correlate to each outcome follows a procedure called
back-propagation.
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ACTUALLY, THIS SHOULD BE FAMILIAR...

Loss function
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Loss function

¢ Minimize multidimensional loss function -~ (OLS anyone?)
¢ By finding the minimum point [=minimum prediction error]
e Explore the “field” step by step
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BEYOND A CNN: TRANSFER LEARNING (CONT.)

* Why transfer learning? Training a CNN from scratch is
expensive and intensive! Always remember the pumpkins
and sheep examples

e Core idea:

@ Take advantage of features that have already been learned

@ Learn new things on top of the old knowledge from new
experiences

e CNN world:

@ Keep information processed by a given layer of a CNN
@ Retrain further layers with new data and new labels



BEYOND A CNN: TRANSFER LEARNING (CONT.)
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BEYOND A CNN: TRANSFER LEARNING (CONT.)
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BEYOND A CNN: TRANSFER LEARNING (CONT.)

* “Freeze” some layers and retrain the active ones
* Idea: keep useful learned features and fine-tune to
account for your labels of interest

PRE-PROCESSING FEATURE EXTRACTION CLASSIFICATION
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* “Freeze” some layers and retrain the active ones
* Idea: keep useful learned features and fine-tune to
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* “Freeze” some layers and retrain the active ones
* Idea: keep useful learned features and fine-tune to
account for your labels of interest
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BEYOND A CNN: TRANSFER LEARNING (CONT.)

* “Freeze” some layers and retrain the active ones
* Idea: keep useful learned features and fine-tune to

account for your labels of interest

PRE-PROCESSING

FEATURE EXTRACTION

Input
13x13

Filters:
8@3x3

[1]0]0
[o[1]0

=)

[o]o]4

HiH

Feature

Activation
layer.
Tanh

Pooling
layer
max

Zero padding (Figure 2)

Convolution (Figure 4)

Non-linear
activation
(Figure 6)

Pooling
(Figure 6)

New
data

CLASSIFICATION

Fully connected
neural network

Hidden
units:
128

E0E0E0E0E0E0E0E0E0E0E0E

New
outcome



CHALLENGES AND RECOMMENDATIONS

* Prevent overfitting(*)
Increase number of training images
Data augmentation
Dropout random neurons
* Optimize your training set
Active learning: Informativeness vs. Representativeness
Class balance
“Denoise” images
Batch normalization
CAUTION: Bias training
* Post-CNN diagnosis
Know your training, testing and out-of-sample data
Always check mislabeled examples: validate, validate,
validate...
Diagnosis
Hyperparameter grid for tuning
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GOING BEYOND PREDICTION: BEYOND A CNN

e There is more than just labeling and prediction
* Maybe we want to:
Cluster images based on content similarities
Use visual features to build a scale
Identify and measure the proportion of k topics in each
image
See the correlation between visual features and predictions
(regression much?)
Inspect and visualize features (*)

e |f so, we might need other tools and approaches



The Bag of Visual Words
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© Follow a Bag of Visuals Word approach in text BUT with
images

@ Build a Document-Term Matrix with images =
Image-Visual Word Matrix

Learn to tokenize images (useful for unsupervised and
interpretable methods)
Bring to the plate what we learned about CNNs

©® And then...? Choose your method! (Today | chose for you)
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TODAY: A “VISUAL” STRUCTURAL ToPIiC MODEL

e Structural Topic Model
e Tool for topic modeling of texts with document-level
covariate information
e Mixture model:
Probability that words belong to each of the “topics” or

groups of interest
Not a single classification outcome, but proportions of all

potential topics for each document
41%
38%
12%

Fag) 9%




BUT FIRST: CONSTRUCTING VISUAL WORDS

* Why do we need visual words?



BUT FIRST: CONSTRUCTING VISUAL WORDS

* Why do we need visual words?
* To build a Document-Term matrix (DTM)!



BUT FIRST: CONSTRUCTING VISUAL WORDS

* Why do we need visual words?
* To build a Document-Term matrix (DTM)!
e Why a DTM?



BUT FIRST: CONSTRUCTING VISUAL WORDS

Why do we need visual words?

To build a Document-Term matrix (DTM)!
Why a DTM?

Because that'’s the input of a STM



BUT FIRST: CONSTRUCTING VISUAL WORDS

Why do we need visual words?

To build a Document-Term matrix (DTM)!
Why a DTM?

Because that'’s the input of a STM
Actually, what's a DTM?
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BUT FIRST: CONSTRUCTING VISUAL WORDS, CONT.

© Identification of blocks in images
@ Extraction of features using a CNN

@ Construction of visual vocabulary based on clustering
features

@ Construction of Image-Visual Word matrix
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(b) Image divided into 32 x 32 pixels blocks



FEATURE EXTRACTION WITH CNNs



FEATURE EXTRACTION WITH CNNs

* Use a CNN to extract features from EACH of the “mini”
images composing each of the images in our corpus



FEATURE EXTRACTION WITH CNNs

* Use a CNN to extract features from EACH of the “mini”
images composing each of the images in our corpus

e CNN = Convolutional Neural Network
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FEATURE EXTRACTION USING CNNs

* Use pre-trained model on each block of an image

* The CNN creates feature maps of “elements/descriptors” that
can be found in an image

* Remove the dense layer (the final one) and keep an appropriate
feature map vector — “Predictors”

e = Each image is described by vector of size number of blocks x
number of features from CNN

* In our applications, this is 70x2,048
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CLUSTERING FEATURES TO BUILD VISUAL
VOCABULARY

¢ Need for tokens — Words
in columns of a DTM

e Define v clusters (= # of
desired visual words)

¢ Cluster randomly selected
sample of feature vectors

* Centroid of cluster is the
“visual word”

* Why do we do this?
Similar features = Same
concept
Reduce potential
sparsity in IVWM
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VISUALIZING VISUAL WORDS

e Blocks that belong to a given cluster are similar in terms of
feature vectors

* Should look visually similar

* Construct “visual words” using the 16 feature vectors
closest to each of the centroid of the cluster

* E.g. the most similar blocks to the “average” block
representing the cluster




IMAGE-VISUAL WORD MATRIX

Document/Term Black| Lives| .- | Matter protest

Where was this public display of sup- | 1 1 e 1 1 0
port during the Black Lives Matter
movement or the prolonged demon-
strations in

And to be honest with you, we | 1 1 e 1 0 2
wouldn’t be seeing this level of protest
if we didn’t have this for the last five
years. Black Lives Matter really set
this idea of how we fight and how we
protest into action.

Over the past several weeks, the stu- | 0 0 -0 0 1
dents of Marjory Stoneman Douglas
High School, have seized the national
spotlight and joined a proud tradition
of student-led protest movements.




IMAGE-VISUAL WORD MATRIX (CONT.)

Image/Visual Word
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BUILDING THE IVWM 1O EMULATE DTM

¢ Also not trivial...
* Assign each feature vector to the most similar visual word
in the vocabulary
Compute the Euclidean distance between each feature

vector and the centroids of the clusters
Assign feature vector to visual word with shortest distance

to centroid



ILLUSTRATING EXAMPLE: MIGRANT CARAVAN



ILLUSTRATING EXAMPLE: MIGRANT CARAVAN

* Groups of migrants from Central America fleeing violence
in their countries and seeking refugee in the U.S.



ILLUSTRATING EXAMPLE: MIGRANT CARAVAN

* Groups of migrants from Central America fleeing violence
in their countries and seeking refugee in the U.S.
* Very polarized coverage of this phenomenon



ILLUSTRATING EXAMPLE: MIGRANT CARAVAN

* Groups of migrants from Central America fleeing violence
in their countries and seeking refugee in the U.S.

* Very polarized coverage of this phenomenon

* Emphasis on magnitude: threat, invasion



ILLUSTRATING EXAMPLE: MIGRANT CARAVAN

* Groups of migrants from Central America fleeing violence
in their countries and seeking refugee in the U.S.

* Very polarized coverage of this phenomenon

* Emphasis on magnitude: threat, invasion

“Massive migrant caravan on the way”

“Looks more like an invasion than anything”




ILLUSTRATING EXAMPLE: MIGRANT CARAVAN

* Groups of migrants from Central America fleeing violence
in their countries and seeking refugee in the U.S.

* Very polarized coverage of this phenomenon

* Emphasis on magnitude: threat, invasion

“Massive migrant caravan on the way”
“Looks more like an invasion than anything”

AlAMSNBC

“See them as they are: Desperate, leaving behind
whatever they had, and whomever they knew,
all for a better chance at life”
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IDENTIFYING POLITICAL COMPONENTS IN THE DATA
GENERATION PROCESS OF IMAGES

e Goal: Identify and quantify the visual framing of the
magnitude of the caravan

e Structural Topic Model to identify underlying “topics”,
understood as frames, in the images

¢ Visual codebook generated from ~ 6,000 pictures from
Getty

* 500 words vocabulary
e Prevalence covariates: agency and date

* Selection of 6 topics:

Crowd
Border/Fence, Small group/Portrait, Water/Sky, Camps,
Darkness



UNDERLYING TOPICS IN THE CARAVAN: FREX WORDS



UNDERLYING TOPICS IN THE CARAVAN: FREX WORDS

Topic 1: Crowds

Topic 2: Border/Fence

Topic 3: Water/Sky
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UNDERLYING TOPICS IN THE CARAVAN:
REPRESENTATIVE IMAGES

Water/
Sky



CROWD TOPIC IN TIME

Use of Topic 'Crowd' in time

Trump threatens
to punish
Honduras

Immigration reform
fails

Caravan arrives
10 U.S. border
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VALIDATION: HIGH CORRELATION BETWEEN TOPICS
AND MANUAL CODING

e Hand-coded sample: presence of medium/big crowd in the

image (crowd=1) or no (crowd=0).
e Correlation with proportion topic “Crowd”: 0.58

7 N

O No crowd
@ Crowd

-
Wezrzretotsvs

Proportion of topic ‘Crowd"
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FRAMES

* Estimate the effect of media ideology on prevalence of
topic “Crowd”

cccccc

—_— 0.103*

Ideology media outlet

0.0 0.1 02 03 0.4
Mean proportion
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THINGS TO CONSIDER

Coherence and symbolism of visual words
Some tokens are similar in terms of features but not
concept
Others are more synonyms than exclusive words
Some visual words are plainly “bad”

e Dimension reduction

Mapping of latent concepts to low-dimensional features
Sensitivity of results to feature definition/extraction

* Interpretation of results
“tea leaves reading”
* Resources

Learning curve
Time?
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What else is out there?



Wrapping-up



A POOL OF OPTIONS

¢ Create high quality training data and use transfer learning

AWS machines, HPC or GPUs [computational power
needed)]

Pre-trained architectures in Google, Amazon, etc.
Creating training data: imglab

* Pre-canned image detection with API access

GoogleVision: https://cloud.google.com/vision/,
Amazon, Microsoft

Labels found in each picture

Face detection

Emotions

Sensitive content (e.g. violence, nudity, etc.)

Object detection


https://cloud.google.com/vision/

OBJECT DETECTION: COVERS OF NEWSPAPERS

Full set of images Only Women’s March images
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FACE DETECTION AND EMOTIONAL CONTENT
Good results with little effort...
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* Detection of fraud using CNNs
(Cantd 2019)
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APPLICATIONS OF COMPUTER VISION TOOLS

* Detection of fraud using CNNs

¢ |dentifying the share of women in
political ads and the gender
composition to the audiences to
which these are deployed

¢ |dentification of (minor) protests
using CNNs and tweets

* Nature and reactions/attention to
female and male politicians’ body
language using key points and
vocal pitch
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CONCLUSION

* Images are powerful (and abundant!) elements of frames.
* The measurement and analysis of visual components are crucial
to have a better understanding of political communication
¢ The learning curve is steep but it pays off
* Plus, there are many accessible options tailored for many needs
* HOWEVER...
* Be thoughtful! Ground your empirics in substantive questions
and theoretical insights.
* Do not use these tools lightly just because you can
¢ Think carefully about what you want the computer to see.
How are you “teaching” it?
How successful are you? What are the mistakes, successes?

What about bias?
How complex is your object of interest?

* VALIDATE, VALIDATE, VALIDATE!
* Keep learning and let the creativity take you to infinity and
beyond!



Appendix



L*A*B COLOR SPACE

e L* = lightness

* a* = chromaticity
coordinate (red axis)

e b* = chromaticity
coordinate (blue axis)

i

White (+1*)
=

Black
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