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● Electoral fraud (Cantú 2019)
● Displays of emotion (Boussalis et al. 2021)
● Rural electrification and service provision (Min 2015)

● Use images as a vehicle for a complex treatment
● Masculinity/femininity (Bauer & Carpinella 2018)
● Police militarization (Mummolo 2018)
● Level of conflict on attitudes towards protesters (Torres 2022)
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cannot be directly manipulated (or independently from other
features →) level of conflict

● Unmeasured latent treatments: other dimensions
potentially confounding or interacting with measured
treatment → magnitude
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Develop a process for identifying latent treatments and adjust-
ing for them to estimate the casual effect of the latent treatment
of interest

1 Get responses, Yi
● Randomly assign intervention to respondents and obtain Yi

2 Build vocabulary and extract features to construct
intervention-feature matrix
● Document-Term Matrix with texts

3 Discover latent treatments in intervention
● Generate training and test sets
● Use supervised Indian Buffet Process (sIBP) on training set matrix

to infer k latent treatments
● Select best model configuration based on quantitative measures

and qualitative inspection of identified treatments
4 Estimate the effect of latent treatments

● Infer latent treatments in the test set
● Estimate effect of latent treatments using regression in test set
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composed of mini images
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Networks

● CNNs composed of many connected layers that represent
content of an image
● They scan images and create “feature maps” that convey

information about the presence of complex features and
their interactions
● Final dense layer outputs probability of image belonging to

each potential label
● These probabilities are obtained through back-propagation

and the minimization of prediction error in a training set
(based on labeled data)
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pictures of climate change affect the perceptions of and
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● Outcome: Evaluations of whether climate changes affects own’s
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● Expectations:

● Images with humans generate stronger perceptions of
family/society being affected by climate change in comparison to
images with animals

● Images with objects generate weaker perceptions of
family/society being affected by climate change in comparison to
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30% of them into 750 visual words
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(c) Object/Scene
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RESULTS III: ESTIMATION OF MAIN TREATMENT
EFFECTS, AFFECTS SOCIETY
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APPLICATION 2: BLM PROTESTS

● Exploring the effect of visual conflict on attitudes towards
social movements

● First step: labeling images according to the level of conflict
they depict
● Identify the features in the images that influence

respondents’ classifications/answers
● Outcome: low, medium or high conflict
● 1,487 images from the BLM protests sampled from a

collection compiled by Getty Images during the 2014 BLM
protests
● Survey on Lucid with 1,478 respondents
● 200 words with k = 6 treatments
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RESULTS I: TOP WORDS
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IMAGES FEATURING EACH OF THE LATENT
TREATMENTS

Z1: Signs/
Hands

Z4: Pavement

Z5: Police/
Dark clothing
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EFFECT OF LATENT TREATMENTS

All Democrats Republicans Independents
(1) (2) (3) (4)

Z1: Signs/Hands/Faces −0.080 −0.040 −0.102 −0.158
(0.024) (0.037) (0.040) (0.061)

Z2: Night/Lights 0.018 0.020 0.011 0.035
(0.025) (0.036) (0.043) (0.064)

Z3: Close-up/Small group −0.003 −0.012 0.028 −0.057
(0.024) (0.035) (0.042) (0.063)

Z4: Pavement 0.086 0.099 0.017 0.189
(0.026) (0.037) (0.043) (0.066)

Z5: Police/Dark clothing 0.103 0.070 0.180 0.049
(0.027) (0.037) (0.043) (0.069)

Z6: Daylight protester −0.138 −0.149 −0.099 −0.193
(0.025) (0.035) (0.042) (0.064)

Constant 1.997 1.971 2.006 2.057
(0.026) (0.037) (0.043) (0.066)

N 4,580 2,245 1,642 693
Adjusted R2 0.013 0.010 0.014 0.026

Bold coefficient: p ≤ 0.05. Bootstrapped standard errors shown.



Motivation Multi-dimensional treatment Method Applications Conclusion

THINGS TO CONSIDER

● Coherence and symbolism of visual words

● Some tokens are similar in terms of features but not
concept

● Others are more synonyms than exclusive words
● Some visual words are plainly “bad”

● Dimension reduction

● Mapping of latent concepts to low-dimensional features
● Sensitivity of results to feature definition/extraction

● Interpretation of treatments:

● “tea leaves reading”
● Post-treatment treatments!
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FURTHER RESEARCH

● Diagnosis and hyperparameter search:
● Feature extraction: number and size of blocks, number of

clusters, CNN model, basic pre-trained vs. transfer learning
● “Curated” vocabulary
● sIBP: number of treatments, model selection, qualitative

assessment
● After latent treatment identification: power, refining

experimental design
● Photoshop...
● ...or new techniques (currently experimenting with LVMs)

● More methods for disentangling the relationship between
features and labels/outcomes: SPRAY, heatmaps, and
more.
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Thank you!

Alex Pugh, alexpugh@rice.edu
Michelle Torres, smtorres@ucla.edu

mailto:alexpugh@rice.edu
mailto:smtorres@ucla.edu
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TABLE OF CONTENTS

● Motivation: Power of Images

● Motivation: Zero-tolerance timeline

● sIBP: Technical details

● CNN for feature extraction

● Building the visual words

● Validation I: “Bad” visual words

● Theoretical Assumptions

● Climate change application: more results

● Post latent treatment identification: exploring alternatives

● Experimental design
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IMAGES ARE POWERFUL

● Activate unconscious cognitive processes (LeDoux 1986, Zajonc
1984)

● Affect attention and content processing (Smith et al. 2001)

● Increase the credibility of information: “see it to believe it”
(Campbell 2004)

● Provide “easy to digest” rich information (Lang, Potter and Bolls
1999)

● Communicate and highlight particular messages (Barry 1997;
Gamson 1989; Parry 2011)
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PUBLIC DISCUSSION OF ’ZERO TOLERANCE’ POLICY
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UNDERSTANDING THE PROBLEM: NOTATION

● Objective: Understand how users respond to texts, X
● Potential outcome: Yi(Xi)
● But, interest is in latent treatment’s effect. Let g ∶ X → {0,1}

(presence or absence of treatment of interest)
● If g(Xi) = 1, then latent treatment is present; if g(Xi) = 0, then

treatment is absent.
● Latent treatment in text assigned to respondent i : Zi ≡ g(Xi)
● (Very Likely) Assumption: There exists other set of unmeasured

latent treatments, Bi ≡ h(Xi)
● Important: h(⋅) and g(⋅) capture all relevant features of the text.
● Thus, the potential outcome is Y (Xi) = Y (Zi ,Bi)
● g is known, but h isn’t.
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CONSTRUCTING VISUAL WORDS: OVERVIEW

Original Steps (Grauman & Darrell,
2005)

1 Identification of key points
2 Description of key points

based on pixel intensity
3 Construction of visual

vocabulary based on
clustering features

4 Construction of
Image-Visual Word matrix

Proposed Process
1 Identification of blocks in

images
2 Extraction of features

using a CNN
3 Construction of visual

vocabulary based on
clustering features

4 Construction of
Image-Visual Word matrix

Table index
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BENEFITS OF BLOCKING COMPARED TO KEY POINT
DETECTION

● Key Point Detection:
● Identifies salient regions in images but...
● ...can result in high variance in number of key points per

image
● Discussion of whether salient areas are the only ones

providing information
● Dependency on another hyperparameter

● Blocking:
● Standardizes areas of the images that are worth focusing

on
● Size of blocks adaptable to image data complexity

● Complex Images with multiple elements in smaller sizes =
small blocks

● Simple, parsimonious images with few elements = large
blocks

● Similar to transformer set-up
Table index
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CHOOSING A CNN

● Ideal: Select a CNN trained on images resembling concept
of interest
● This is not trivial...
● Two Alternatives

1 Use pre-trained model without the output layers
2 Retrain some layers in existing model via transfer learning

● In our applications, we use ResNet50 trained on ImageNet
(14 million+ images of 1,000 categories)
● Not ideal in terms of “fit” but...
● Offers a conservative test
● It includes some interesting and relevant categories (e.g.

police car, assault gun, aircraft, chainlink fence, etc.)
● Interested in patterns not labels

Table index
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RESNET50 ARCHITECTURE
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OTHER ALTERNATIVES TO EXTRACT TOKENS

● Basic Histogram of Gradients (HoGs) → “Too simple” (*)
● Object detection in each image and feature count → A

priori knowledge of what to find
● Layer-wise relevance propagation heatmaps → Information

at the image level; isolated features are hard to track
● Transformers → better at prediction but less applicable to

feature extraction. Similar issues with respect to
interpretation(*)
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BAD VISUAL WORDS

Table index
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POTENTIAL SOLUTIONS: KEYATM

Topics

V
is

ua
l w

or
ds

1_
F

ire

2_
P

ol
ic

e

3_
N

ig
ht

O
th

er
_1

O
th

er
_2

O
th

er
_3

O
th

er
_4

O
th

er
_5

#1

#2

#3

#4

#5

#6

#7

#8

#9

#10

Top Words in Topics



Motivation Multi-dimensional treatment Method Applications Conclusion

THEORETICAL ASSUMPTIONS I

SUTVA

For all individuals i and any X ,X ′ such that Xj[i] = X ′j[i], Yi(X) = Y (X ′)

An individual’s response to an image is only impacted by the
assigned image

Potential violations:
● If coding multiple images, individuals’ responses may be

influenced by preceding images
● Analyst induced SUTVA violations if same images used for

discovery of latent treatments and estimation of causal
effects (Egami et al. 2018)
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THEORETICAL ASSUMPTIONS II

Ignorability and Positivity

For all individuals i, Yi(x) ⊥⊥ Xi and Pr(Xi = x) > 0 for all x ∈ X

● Independence of the treatment assignment from the
potential outcomes

● Every treatment has a chance of being observed

Potential violations:
● Satisfied with proper randomization of images based on N

individuals and nt images per treatment
● Caution about the estimation of causal effects if

missingness in coder labels, removal of low quality
responses, attrition caused by the treatment
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THEORETICAL ASSUMPTIONS III

Sufficiency

For all X and X ′ such that g(x) = g(X ′), E[Yi(g(X))] = E[Yi(g(X ′))]
and Pr(Zi = 1∣Bi = b)

● Codebook function identifies all information in an image
that is relevant to the response

Potential violations:
● The tokenization of images process may remove or reduce

information about features that are relevant to latent
treatment of interest and individuals’ responses
● Might expect violations especially if tokenization process

removes information regarding color
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THEORETICAL ASSUMPTIONS III, CONT.

● Color of flags indicating ideological stand
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THEORETICAL ASSUMPTIONS IV

Common Support

For all X and X ′ such that g(x) = g(X ′), E[Yi(g(X))] = E[Yi(g(X ′))]
and Pr(Zi = 1∣Bi = b)

● All combinations of latent treatments have a non-zero
probability of being observed

● No aliasing between latent treatments

Potential violations:
● May be the assumption most likely violated with images
● Some treatment combinations may not be present in body

of images because latent features naturally correlate
● Challenging to manipulate images to satisfy this

assumption
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THEORETICAL ASSUMPTIONS IV, CONT.

● Assume Z1 is “children” and Z3 is “fire.” Unlikely to find
both in one picture.
● However...
● Thus, be careful!
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EXPERIMENTAL DESIGN: TREATMENT COMBINATIONS
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EXPERIMENTAL DESIGN: TREATMENT
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EXPERIMENTAL DESIGN: TREATMENT
COMBINATIONS, CONT.
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CLIMATE CHANGE: DATASET

● Climate Visuals library (link)
● Only Creative Commons images used
● Images visualize full concept of climate change
● Impacts, Causes, and Solutions
● Geographically and ethnically diverse in composition

http://climatevisuals.org
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CORRELATION BETWEEN TREATMENTS

Z1 Z2 Z3 Z4 Z5
Z1: Ice, sky & snow 1 0.461 0.015 −0.005 −0.041
Z2: Body parts & Texture 0.461 1 -0.014 −0.016 0.028
Z3: Fire, warm & reds 0.015 −0.014 1 0.057 0.059
Z4: Water, blue & waves -0.005 −0.016 0.057 1 -0.021
Z5: Sand, dry & heat -0.041 0.028 0.059 -0.021 1
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DISTRIBUTION OF TREATMENTS IN SAMPLE
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ESTIMATION OF CONFOUNDING EFFECTS, AFFECTS
FAMILY

Climate change affects my family
Skeptic Apathetic Believers

Z1: Ice, sky & snow −0.056 −0.139 −0.021
(0.190) (0.127) (0.060)

Z2: Body parts & Texture −0.091 −0.010 0.085
(0.189) (0.127) (0.060)

Z3: Fire, warm & reds −0.203 −0.027 −0.081
(0.282) (0.183) (0.086)

Z4: Water, blue & waves 0.060 0.190 0.094
(0.284) (0.219) (0.099)

Z5: Sand, dry & heat 0.123 0.362 0.034
(0.346) (0.224) (0.087)

Constant 2.249 2.762 3.341
(0.125) (0.088) (0.045)

N 182 252 760
R2 0.007 0.020 0.005

Bold coefficient: p ≤ 0.05
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EFFECT OF CONFOUNDING TREATMENTS ON
TREATMENT OF INTEREST

Human Treatment
Z1: Ice, sky & snow −0.222∗

(0.030)
Z2: Body parts & Texture 0.243∗

(0.030)
Z3: Fire, warm & reds −0.032

(0.043)
Z4: Water, blue & waves −0.254∗

(0.049)
Z5: Sand, dry & heat 0.060

(0.046)
Constant 0.358∗

(0.021)
N 1,194
Log Likelihood −758.470
AIC 1,528.940

* p < 0.05

Table index
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